A. P. Jose and K. L. Shepard, “Distributed loss-compensation techniques for energy-efficient low-latency on-chip communications” IEEE Journal of Solid-State Circuits, Vol. 42, June, 2007, pp. 1415-1424.

Abstract

In this paper, we describe the use of distributed loss compensation to provide nearly transmission-line behavior for long on-chip interconnects. Negative impedance converters (NICs) inserted at regular intervals along an on-chip line are shown to reduce losses from more than 1 dB/mm to less than 0.3 dB/mm at 10 GHz. Results are presented for a 14-mm 3-Gb/s on-chip double-data-rate (DDR) link in 0.18- m CMOS technology, with a measured latency of 12.1 ps/mm and an energy consumption of less than 2 pJ/b with a BER 10 14. This constitutes a factor-of-three improvement in power and a one-and-a-half-times improvement in latency over an optimally repeated RC line of the same wire width.